MES – The Future Surfactant

Walter Jessup
Challenges to the Detergent Industry

- Raw Material Cost Increases
- Formulating with Alternative Detergent Actives
- Available & Sustainable Source of Supply
- Environmental and Regulatory Concerns
Alternative Surfactants Require:

- Adequate Volume to Supply the Industry
- Equivalent Surfactant Properties
- Developed Processing Technology
- Developed Formulation Technology
- Lower Cost
The Case for MES

Methyl Ester Sulfonates (MES)

- Methyl Ester Raw Material Widely Available – renewable natural oils
- Trans-esterification of fatty acids with Methanol followed by refining and hydrogenation – all known technologies
- Sulfonation Process Available that can be adapted to Existing Sulfonation Plants
- Excellent Surfactant Properties
Advantages of MES

- Derived from renewable oil resources
 - Natural fats and oils
 - Supply of palm oil steadily increasing
 - ME Cost per ton historically has been less than LAB (subject to changing market conditions)

- High detergency and calcium ion stability
 - Less MES for equivalent washing power
 - Good co-active
Advantages of MES

- Attractive biological properties
 - Low toxicity
 - Biodegrades similar to AS and soap
 - Biodegrades quicker than LAS
Cost Compare MES & LABS

February, 2006

Relative Sulfonation Cost of MES and LABS

<table>
<thead>
<tr>
<th>Raw Materials</th>
<th>MES</th>
<th>LABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur</td>
<td>0.11</td>
<td>0.102</td>
</tr>
<tr>
<td>LAB</td>
<td>0.112</td>
<td>0.102</td>
</tr>
<tr>
<td>ME</td>
<td>0.775</td>
<td>--</td>
</tr>
<tr>
<td>NaOH</td>
<td>0.158</td>
<td>--</td>
</tr>
<tr>
<td>MeOH</td>
<td>0.08</td>
<td>--</td>
</tr>
<tr>
<td>H2O2</td>
<td>0.06</td>
<td>--</td>
</tr>
<tr>
<td>Na2SO4</td>
<td>0.02</td>
<td>--</td>
</tr>
<tr>
<td>N2</td>
<td>0.035</td>
<td>--</td>
</tr>
<tr>
<td>Total Raw Materials</td>
<td>$582.84</td>
<td>$1,131.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utilities</th>
<th>MES</th>
<th>LABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>US$102/MWH</td>
<td>0.209 MWH</td>
</tr>
<tr>
<td>Steam</td>
<td>8.70/MT</td>
<td>2.05 T</td>
</tr>
<tr>
<td>Cooling Water</td>
<td>21.74/KT</td>
<td>0.055 KT</td>
</tr>
<tr>
<td>Total Utilities</td>
<td>$40.35</td>
<td>$20.77</td>
</tr>
</tbody>
</table>

Total Cost Excluding Labor, Capital & OH

<table>
<thead>
<tr>
<th>MES</th>
<th>LABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$623.18</td>
<td>$1,152.67</td>
</tr>
</tbody>
</table>
Relative Sulfonation Cost of MES and LABS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur</td>
<td>475</td>
<td>0.11</td>
<td>52.25</td>
<td>0.102</td>
<td>48.45</td>
<td></td>
</tr>
<tr>
<td>LAB</td>
<td>1800</td>
<td>--</td>
<td>--</td>
<td>0.721</td>
<td>1297.8</td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>1250</td>
<td>0.775</td>
<td>968.75</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>NaOH</td>
<td>650</td>
<td>0.158</td>
<td>102.7</td>
<td>0.26</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>MeOH</td>
<td>550</td>
<td>0.08</td>
<td>44</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>H2O2</td>
<td>700</td>
<td>0.06</td>
<td>42</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Na2SO4</td>
<td>400</td>
<td>0.02</td>
<td>8</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>75</td>
<td>0.035</td>
<td>2.625</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Total Raw Materials</td>
<td>$1,220.33</td>
<td></td>
<td></td>
<td>$1,515.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utilities</th>
<th>MES US$/102/MWH</th>
<th>T/M</th>
<th>US$/100 MWH</th>
<th>LABS US$/102/MWH</th>
<th>T/M</th>
<th>US$/100 MWH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>US$102/MWH</td>
<td>0.209 MWH</td>
<td>21.318</td>
<td>0.180 MWH</td>
<td>18.36</td>
<td></td>
</tr>
<tr>
<td>Steam</td>
<td>8.70/MT</td>
<td>2.05 T</td>
<td>17.835</td>
<td>0.14</td>
<td>1.218</td>
<td></td>
</tr>
<tr>
<td>Cooling Water</td>
<td>21.74/KT</td>
<td>0.055 KT</td>
<td>1.1957</td>
<td>0.055 KT</td>
<td>1.1957</td>
<td></td>
</tr>
<tr>
<td>Total Utilities</td>
<td>$40.35</td>
<td></td>
<td></td>
<td>$20.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Total Cost Excluding Labor, Capital & OH** | **$1,260.67** | **$1,536.02** |

Copyright 2008 by The Chemithon Corp.: Used by Permission
ME Feedstocks

- From Variety of Animal and Vegetable Oils
- Part of Normal Synthesis Route to Fatty Alcohols, Ethoxy Alcohols and Bio-Diesel
- Enjoys Natural Economic Advantage
ME Feedstocks

- Fats or Oils
 - Esterification & Purification
 - Low Pressure Hydrogenation
 - Methylesters
 - High Pressure Hydrogenation
 - Fatty Alcohols
 - Ethoxylation
 - Ethoxy Alcohols
Approximate Production and Use of Natural Fats and Oils

- Vegetable Oils: ~71 Million Metric Tons
- Animal Oils: ~29 Million Metric Tons
- Total Natural Fats and Oils: ~100 Million Metric Tons
- Food: ~80 Million Metric Tons
- Industrial Uses: ~20 Million Metric Tons
 - Animal Feeds: ~8 Million Metric Tons
 - Oleochemical Uses: ~12 Million Metric Tons
MES Surfactant Uses

- **Liquid Household Cleaners** (C\textsubscript{12} to C\textsubscript{14})
 - Dishwash, Fine Fabrics, Hard Surfaces
- **Personal Care** (C\textsubscript{12} to C\textsubscript{14})
 - Shampoos, Bubble Bath, Liquid Hand Soaps, Bar Soap
- **Laundry Powders and Bars**
 - C\textsubscript{1416} used by Lion
 - C\textsubscript{1618} used by Henkel and others
- **Industrial Surfactants**
Detergency Vs. Hardness

Water Hardness (ppm CaCO₃)

Surfactant Concentration 210 ppm
Detergency Vs. Concentration

- C1416 MES
- LAS
- C12 AS

Water Hardness: 54 ppm

Concentration of Surfactant (ppm)

Detergency (%)
Why Isn’t MES in Widespread Use?

- Traditional Process Technology Has Been Inadequate
 - Poor color compared to other anionics
 - Poor yield of MES from feedstock
 - Only low active aqueous paste products
- More complex to manufacture compared to other anionics
Why Isn’t MES in Widespread Use

- **Feed Stock Availability**
 - ME production and refining
 - Price and supply of natural oils

- **Product Formulation**
 - MES is hydrolytically unstable at high pH
 - Requires formulation techniques specific to MES

- **Competition from Bio-fuels for Feedstock**
Making High Quality MES

- **Color**
 - MESA digestion step causes color darker than typical anionics
 - MES requires bleaching to achieve acceptable final color

- **Di-Salt**
 - Undesirable by-product – sulfonated soap
 - Can be a major component
 - Conversion to MES
Methods to Improve Color in MES

- **Feed Stock**
 - Lowest cost method to improve product quality
 - R&B Oil
 - Lower Iodine Value
 - Fractionation
 - Hydrogenation
Methods to Improve Color in MES

- **Sulfonation**
 - Good Mole Ratio Control
 - Color Inhibitor

- **Bleaching – Required for Consumer Products**
 - Sodium Hypochlorite – Unacceptable byproducts
 - Hydrogen Peroxide – Safety Issues but Required for an Acceptable Product
Bleaching Methods

- **Neutral Bleaching**
 - Less Effective
 - Requires Extended Times - Large Storage Vessels

- **Acid Bleaching**
 - Fast and Best Product Color
 - Requires Special Materials of Construction
Di-Salt in MES

- Di-Salt is Sulfonated Soap
- Two Sources in MES Manufacture

\[
\begin{align*}
R-\text{CH-}(\text{C-OCH}_3):\text{SO}_3 \quad \text{(I)} + 3 \text{NaOH} & \rightarrow R-\text{CH-C-ONa} \quad \text{(III)} + 2 \text{H}_2\text{O} + \text{CH}_3\text{OSO}_3\text{Na} \\
\text{SO}_3\text{H} & \quad \text{SO}_3\text{Na} \\
\end{align*}
\]

\[
\begin{align*}
R-\text{CH-}(\text{C-OCH}_3) \quad \text{(II)} + \text{H}_2\text{O} & \rightarrow R-\text{CH-C-ONa} \quad \text{(III)} + \text{CH}_3\text{OH} + \text{H}_2\text{O} \\
\text{SO}_3\text{Na} & \quad \text{SO}_3\text{Na} \\
\end{align*}
\]
Detergency of Di-Salt

75 ppm Mg++

Copyright 2008 by The Chemithon Corp.: Used by Permission
Impact of Di-Salt

- **Poorer Surfactant Properties**
 - MES has 50% higher detergency
 - MES has similar surface tension at 1/10 conc.

- **Poor Cold and Hard Water Properties**
 - Di-salt has much higher Kraft points
 - Di-salt precipitates even in soft water

- **Di-Salt is a Yield Loss**
 - Blends of di-salt / MES similar to Soap / MES – at much higher cost
Formulation with MES

- **Form of Product Critical for MES**
 - MES hydrolytically unstable
 - Will hydrolyze rapidly if formulation is aqueous and basic

- **Example – Spray Drying**

<table>
<thead>
<tr>
<th>Time</th>
<th>Initial</th>
<th>After Spray Dry</th>
<th>After 1 month</th>
<th>After 2 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di-Salt</td>
<td>4.40%</td>
<td>33%</td>
<td>89%</td>
<td>98%</td>
</tr>
</tbody>
</table>
Need MES in Dry Form

- Dry Neural Paste to Remove Methanol
- Laundry Powder Formulations
 - Agglomerate / blend to final product
- Detergent Bar Formulation
 - Co-mix molten or powder dry MES
 - Co-extrude / form final product
- Liquid Formulations – Dilute to Desired Concentration
Challenges of MES Production

- High SO$_3$:ME mole ratios and high temperatures for high yields
 - Resulting dark MESA requires bleaching
- Di-salt an undesirable by-product
- Stricter formulation requirements for shelf-stable product
- Safety Issues
 - Peroxides and Methanol
 - Organic Peroxides
Meeting the Challenges

- **Best Practice MES process**
 - MeOH re-esterification w/ H_2O_2 acid bleaching

- **Critical parameters**
 - Low residual oil, low color
 - Minimal di-salt
 - Neutral dried product
Best Practice MES Process

- Uses Conventional Air/SO$_3$ Film Sulfonation
- Special Acid Digester
- Re-Esterfication with Methanol
- Acid Bleaching with 50% H$_2$O$_2$
- Drying of Neutral MES
- Monitoring Equipment for O2
- Peroxide Control in Off-streams
Acid Bleaching MES Process Flow Diagram

- Sulfur Supply
- SO₃ Gas Generator
- Air Supply
- Optional SO₃ Absorber
- Sulfonation Reactor
- Organic Raw Material
- Effluent Gas Treatment
- Acid Digestion
- Product Drying TTD
- Product
- Bleaching
- Neutralization
- Neutralizing Agent
- Methanol Recovery
- Methanol
- H₂O₂
MES Sulfonation Chemistry

- **Formation of adduct(II) from methyl ester (I):**
 \[
 R-CH_2-C-OCH_3 \text{(I)} + So_3 \quad \text{<----->} \quad R-CH_2-(C-OCH_3):SO_3 \text{(II)}
 \]

- **Sulfonation of adduct(I) to sulfonated adduct(III):**
 \[
 R-CH_2-(C-OCH_3):SO_3 \text{(II)} + So_3 \quad \text{----->} \quad R-CH-(C-OCH_3):SO_3H \text{(III)}
 \]

- **Elimination of SO$_3$ to form MESA(IV):**
 \[
 R-CH-(C-OCH_3):SO_3 \text{(III)} \quad \text{----->} \quad R-CH-C-OCH_3 \text{(IV)} + So_3
 \]

Copyright 2008 by The Chemithon Corp.: Used by Permission
By-product Sulfonation Chemistry

▲ Dimethyl sulfate (trace)
 \[\text{CH}_3\text{OSO}_3\text{H} + \text{CH}_3\text{OH} \rightarrow \text{CH}_3\text{OSO}_2\text{OCH}_3 + \text{H}_2\text{O} \]

▲ Dimethyl ether
 \[\text{CH}_3\text{OSO}_2\text{OCH}_3 + \text{CH}_3\text{OH} \rightarrow \text{CH}_3\text{OSO}_3\text{H} + \text{CH}_3\text{OCH}_3 \]

▲ Reduction of SO$_3$ to SO$_2$, and Oxidation of the alkyl chain:
 \[\text{SO}_3 + \text{R-C-C-C-C-C-R'} \rightarrow \text{R-C-C-C}=\text{C-C-R'} + \text{SO}_2 + \text{H}_2\text{O} \]

▲ Sulfonation to form Color Bodies
Effect of SO$_3$ Mole Ratio on MESA Color and Free Oil

![Graph showing the effect of SO$_3$ mole ratio on MESA color and free oil](image)
Effect of Mole Ratio & Digestion Temperature on Extractable Oil
Effect of Mole Ratio & Digestion Temperature on Color

Color (5% Klett)

Mole Ratio

Digest Temp

Low

High

4,000

8,000

12,000

16,000

20,000
Effect of Digestion Time & Temperature on Extractable Oil

% Extractable Oil

Low High

Low

Digest Temp

High

Digest Time

Low

High
Effect of Digestion Time and Temperature on MESA Color
Bleaching Chemistry

- Reaction of sulfonated adduct (III) to MESA (IV)
 \[
 R\text{-CH-(C-OCH}_3\text{):SO}_3\text{H} \text{ (III) + CH}_3\text{OH} \rightarrow R\text{-CH-C-OCH}_3\text{ (IV) + CH}_3\text{OSO}_3\text{H}
 \]

- Reaction with SO\textsubscript{2} to form Sulfuric Acid

- Decomposition of Hydrogen Peroxide
 \[
 2 \text{H}_2\text{O}_2 \rightarrow \text{O}_2 + 2 \text{H}_2\text{O}
 \]

- Epoxidation with Hydrolysis of unsaturates
 \[
 R\text{-C=C + H}_2\text{O}_2 \rightarrow R\text{-C-O-C-R + H}_2\text{O} \rightarrow R\text{-C-O-C-R}
 \]

- Hydrolysis of MESA to Di-Acid
 \[
 R\text{-CH-C-OCH}_3\text{ (IV) + H}_2\text{O} \leftrightarrow R\text{-CH-C-OH (VI) + CH}_3\text{OH}
 \]
Development of Acid/MESA Bleaching Technology

- **Developmental Goals**
 - Eliminate halogen bleaching
 - Decrease sensitivity to feedstock
 - Reduce extremely long bleaching times
 - Reduce di-salt level in product

- **Technical Problems for Aggressive Bleaching**
 - H_2O_2 decomposed at higher temperatures
 - Highly viscous sulfonic acid during bleaching
 - Hydrolysis to di-acid was favored as bleaching became more aggressive
Aggressive Bleaching Technology

- Alcohol Addition was Increased
 - Decreased viscosity
 - Suppressed hydrolysis
- Non-Metallic or Low-iron Corrosion Resistant alloys
 - Reduced decomposition of hydrogen peroxide
 - Higher temperature operation possible
- Optimum Operating Conditions were Determined
- Part of an Integrated MES Process
Effect of Temp in Metallic Systems

Bleaching Time (min)

5% Klett color

T= 65 C
T= 72 C
T= 80 C

Copyright 2008 by The Chemithon Corp.: Used by Permission
Non-Metallic Bleaching of MES

- Bleaching Rate Very Temperature Sensitive
- H₂O₂ Decomposition Same at Higher Temperature

![Graph showing bleaching rate and H₂O₂ decomposition](chart.png)
Minimizing Di-Salt

% Yield to Di-Salt

Methanol Addition (%)

H2O2 Conc. (%)
Minimizing Neutral Color

C1618 MES

Color (5% Klett)

Bleach Time (min)

Bleacher Temp (°C)

Copyright 2008 by The Chemithon Corp.: Used by Permission
Minimizing Unreacted Oil

% Extractable Oil

Mole Ratio

Digest Temp (°C)

1.1
1.2
1.3
1.4
1.5
70
75
80
85
90

Copyright 2008 by The Chemithon Corp.: Used by Permission
Iodine Value Needed with Aggressive Bleaching

- Only IV is Shown, but Hydroxy Groups Should Have an Equivalent Effect
- Iodine Values Above Two Will Produce Inferior MES
 - Oil levels become excessive at reasonable SO$_3$ mole ratio
 - Large H$_2$O$_2$ requirement increases di-salt
- IVs Below Two Produce Good Quality MES
 IVs Below One Produce Excellent MES
Neutralization Chemistry

- MESA neutralization

\[
\text{R-CH-C-OCH}_3 \text{ (IV)} + \text{NaOH} \rightarrow \text{R-CH-C-OCH}_3 \text{ (VII)} + \text{H}_2\text{O}
\]

- MESA:SO$_3$ adduct neutralization to form Di-Salt

\[
\text{R-CH-} \langle \text{C-OCH}_3 \rangle : \text{SO}_3 \text{ (III)} + 3 \text{NaOH} \rightarrow \text{R-CH-C-ONa (V)} + 2 \text{H}_2\text{O} + \text{CH}_3\text{OSO}_3\text{Na}
\]

- Hydrolysis of MES

\[
\text{R-CH-C-OCH}_3 \text{ (IV)} + 2 \text{NaOH} \rightarrow \text{R-CH-C-ONa (V)} + \text{H}_2\text{O} + \text{CH}_3\text{OH}
\]
MES Hydrolytic Stability

- MES is prone to hydrolysis at high and low pH

Hydrolysis data for C1214 SASME from Stein and Baumann, JAOCs, September, 1975

- Concern in Neutralization is high point temperatures and pH
Product Characteristics

- Flake has excellent characteristics
 - Non-clumping in storage at 5% moisture
 - Excellent flowability
 - Non-dusting

- Formed Flake can be ground as needed
MES Drying: Residual Water

% Residual H2O

Fed Rate of SASME (Kg/hr)

Inlet Feed Temperature (°C)
Minimizing Residual Methanol

% Residual Methanol

Inlet Feed Temperature (°C)

Feed Rate of SASME (Kg/hr)

Copyright 2008 by The Chemithon Corp.: Used by Permission
Pilot Plant ME Sulfonation Tests

- Over 25 different ME feeds sulfonated
 - Chemithon MES pilot plant, Seattle U.S.A

- Will present the results for five ME’s
 - All products stripped or dried
 - Includes low quality, low cost, unsaturated ME’s
 - Cheap source of surfactant

- Building a product database for a wide variety of feedstocks

Copyright 2008 by The Chemithon Corp.: Used by Permission
Methyl Ester Comparison

<table>
<thead>
<tr>
<th>Carbon chain length (wt%)</th>
<th>Coconut C12-C14</th>
<th>Palm Kernel C8-C18</th>
<th>Palm Stearin C16-C18</th>
<th>Tallow C16-C18</th>
<th>Soya C18</th>
</tr>
</thead>
<tbody>
<tr>
<td><C10</td>
<td>0.0</td>
<td>5.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C10</td>
<td>0.0</td>
<td>4.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C12</td>
<td>71.5</td>
<td>51.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C14</td>
<td>28.0</td>
<td>15.1</td>
<td>1.5</td>
<td>3.1</td>
<td>0.0</td>
</tr>
<tr>
<td>C16</td>
<td>0.6</td>
<td>7.2</td>
<td>65.4</td>
<td>31.6</td>
<td>10.4</td>
</tr>
<tr>
<td>C17</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>C18</td>
<td>0.0</td>
<td>17.2</td>
<td>32.2</td>
<td>63.6</td>
<td>89.6</td>
</tr>
<tr>
<td>>C18</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>1.8</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Coconut 222</th>
<th>Palm Kernel 227</th>
<th>Palm Stearin 279</th>
<th>Tallow 287</th>
<th>Soya 295</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>222</td>
<td>227</td>
<td>279</td>
<td>287</td>
<td>295</td>
</tr>
<tr>
<td>Iodine value (cg iodine/g ME)</td>
<td>0.1</td>
<td>1.4</td>
<td>0.3</td>
<td>0.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Carboxylic Acid (wt%)</td>
<td>0.1</td>
<td>0.2</td>
<td>n/a</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Acid value (mg KOH/g ME)</td>
<td>0.2</td>
<td>0.5</td>
<td>0.4</td>
<td>3.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Saponification no. (mg KOH/g ME)</td>
<td>252</td>
<td>240</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Freeze Point (C)</td>
<td>0</td>
<td>18</td>
<td>26</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td>Moisture (wt%)</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Copyright 2008 by The Chemithon Corp.: Used by Permission
Dried MES Product Quality

<table>
<thead>
<tr>
<th></th>
<th>Coconut C12-C14</th>
<th>Palm Kernel C8-C18</th>
<th>Palm Stearin C16-C18</th>
<th>Tallow C16-18</th>
<th>Soya C18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium methyl ester sulfonate (α-MES)</td>
<td>71.5</td>
<td>69.4</td>
<td>83.0</td>
<td>77.5</td>
<td>75.7</td>
</tr>
<tr>
<td>Disodium carboxy sulfonate (di-salt)</td>
<td>2.1</td>
<td>1.8</td>
<td>3.5</td>
<td>5.2</td>
<td>6.3</td>
</tr>
<tr>
<td>Methanol (CH$_3$OH)</td>
<td>0.48</td>
<td>0.60</td>
<td>0.07</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Hydrogen peroxide (H$_2$O$_2$)</td>
<td>0.10</td>
<td>0.04</td>
<td>0.13</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>Water (H$_2$O)</td>
<td>14.0</td>
<td>15.2</td>
<td>2.3</td>
<td>2.9</td>
<td>1.4</td>
</tr>
<tr>
<td>Petroleum ether extractables (PEX)</td>
<td>2.6</td>
<td>2.7</td>
<td>2.4</td>
<td>4.8</td>
<td>7.2</td>
</tr>
<tr>
<td>Sodium carboxylate (RCOONa)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Sodium sulfate (Na$_2$SO$_4$)</td>
<td>1.2</td>
<td>1.8</td>
<td>1.5</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Sodium methyl sulfate (CH$_3$OSO$_3$Na)</td>
<td>8.0</td>
<td>8.4</td>
<td>7.2</td>
<td>7.7</td>
<td>2.5</td>
</tr>
<tr>
<td>10% pH</td>
<td>5.0</td>
<td>5.3</td>
<td>5.3</td>
<td>5.4</td>
<td>5.8</td>
</tr>
<tr>
<td>Klett color, 5% active (α-MES + di-salt)</td>
<td>30</td>
<td>310</td>
<td>45</td>
<td>180</td>
<td>410</td>
</tr>
</tbody>
</table>

Copyright 2008 by The Chemithon Corp.: Used by Permission
MES Product Specifications

- **Color of MES:**
 - < 100 (5% Klett) usually is adequate, < 20 is possible

- **Extractable Oils in MES:**
 - < 4 ± 1% AMB

- **Volatile Oils in MES:**
 - < 2 ± 1% AMB

- **By-product Di-Salt:**
 - Less than 6% AMB

- **Actives concentration:**
 - 25% to 85% (alcohol free)

- **Residual Alcohol to Required spec.**
MES Dried Product

- Palm Kernel (C8-C18)
- Coconut (C12-C14)
- Soya (C18)
- Palm Stearin (C16-C18)
- Tallow (C16-C18)
MES Product

<table>
<thead>
<tr>
<th>C16 Sodium Methylester Sulfonate (Feedstock MW 270.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Active</td>
</tr>
<tr>
<td>Disalt (100% Al)</td>
</tr>
<tr>
<td>wt % Soap</td>
</tr>
<tr>
<td>5% Active Klett</td>
</tr>
<tr>
<td>% Pet Ether Extractable (100% Al)</td>
</tr>
<tr>
<td>wt % H2O</td>
</tr>
<tr>
<td>wt % Methanol</td>
</tr>
<tr>
<td>Condition 764; dried Feb. 5, 2003</td>
</tr>
</tbody>
</table>
MES Product Quality

- MES Active (%): 88.7%
- Disalt (100% AI basis): 5.6%
- Color (5% Klett): 18
- PEE (100% AI basis): 2.00
- Water (%): 2.3%
- Methanol (%): < 0.1%
MES Dryers and Chilled Belt
MES Profitability

- Savings est. ~US$275/MT vs. LABS
- Potential Annual Savings
 US$11,000,000 for a 40,000MT/y plant
Conclusion

- MES is a Viable Alternative Surfactant
 - Still Show Lower Cost than LABS
 - >100 Million MT/y Produced in North America
 - Proven Process Technology
 - Successful Use in Detergent Market